

Overview of Accuracy Scenario Generation Task

FAA William J. Hughes Technical Center

ACT-250 CP Assessment Team

Presented by Team Lead Mike Paglione

December 16, 1999

Briefing Outline

- Overall Task Description
- Schedule
- Methodology

Overall Task Description*

- **Develop the necessary tools**, infrastructure and documentation required to create URET CCLD accuracy scenarios that represent the characteristics of the Design Workload.
- **Participate in the data collection** of field data required for development of the URET CCLD accuracy scenarios.
- Develop a sample version and two actual URET CCLD traffic scenarios for the accuracy testing for FAA s acceptance testing of URET CCLD.
 - Perform a trajectory accuracy analysis using the developed accuracy scenarios on URET daily use system so that AUA-200 can refresh the URET CCLD system specification accuracy metrics.

Main Task Item Schedule

• FY99 PD

Trajectory Accuracy Report

» completed 5/99 ✓

Develop Necessary Tools

» ongoing

Scenario Characteristics Paper

- » delivered review draft 9/14/99 ✓
- » received comments by 9/30/99 ✓
- » final 12/99

Main Task Schedule Cont d

• FY00/01 PDs

Sample Scenario (CMS format)

» delivery date 1/00

Sample Trajectory Analysis

» completion date 4/00

Initial Accuracy Scenario

» delivery date 7/00

Final Accuracy Scenario

» delivery date 11/00

Methodology

--Backup Slides-Overview of Accuracy Scenario Generation Task

FAA William J. Hughes Technical Center

ACT-250 CP Assessment Team

Presented by Team Lead Mike Paglione

December 16, 1999

Air Traffic Database

- Bookkeeping tables
 contain data set and run identification information
- Flight tables contain flight-centric message data
- Environment tablescontain center specific data

Flight-Centric Message Data

- A flight is established for each unique ACID/CID with a flight plan message.
- Each flight has a *start_time*, which is the time of the flight s first recorded track message.
- All other event times associated with a flight are relative to this *start_time*.
- Each flight also has a *delta_time* which
 can be adjusted by software to create different scenarios
 by changing the time events associated with flights.

Example of Modifying a Flight by delta_time

Messages shown using P320 message type codes

Field Data Processing Programs

ext: Extracts message data from a HID recorder file and inserts data into the Air Traffic Database

sgp: Selects data from Air Traffic Database and generates requested scenario file(s)

odo: Creates runs using time shifting

P320 Formatted Scenario File

- ASCII file.
- Mutation of HCS 3.20 patch messages
- Defined by MITRE for URET testing
- Used to perform trajectory analysis for recalibration of the URET CCLD SSD

CMS Formatted Scenario File

Determined P320 HID recorder file format

Worked with MITRE

Provided this information to LMATM

• LMATM wrote SIG 264 to specify its contents and format ACT-250 is a member of the Concurrent Engineering Team

• File containing a hodgepodge of:

ASCII encoded headers

Binary data

EBCDIC encoded messages

 Using IRD dated August 23rd plus RPRs to be specified by LMATM

Scenario Time Compression

Random Time Adjustment

Definition of Aircraft to Aircraft Encounter & Conflict

• For encounter, aircraft pair separated by: less than 30 nm horizontally less than legal separation vertically (i.e. 1000 ft at or below FL 290 and 2000 ft above)

• For conflict, aircraft pair separated by: less than 5 nm horizontally less than legal separation vertically (same as encounter)

Design Considerations in Encounters/Conflicts

Encounter Exceptions

Encounter ends but resumes within 5 minutes or less, is considered single encounter

Encounter with track time gap is considered single encounter if it resumes within 5 minutes or less

Exclude encounters with duration of ≤ 10 seconds

Aircraft in cruise assumed at assigned altitude for separation calculations if within 300 ft of assigned altitude

<u>Design Considerations in</u> <u>Encounters/Conflicts Cont d</u>

Flight Plan Adherence

lateral adherence age calculated using reference time based on constraint table (*Table 3.2-1 and 3.2-2) where minimum horizontal separation falls thresholds vertical flight plan adherence in SSD and thresholds for lateral flight plan adherence being evaluated

*Source: Description of Accuracy Scenarios for the Acceptance Testing of URET CCLD, Review Draft 9/14/99

Table 3.2-1: Current Plan Aircraft to Aircraft Encounter Counts*

Minimum Horizontal	Total Number of
Separation (nm)	Encounters Required
$0 \le d \le 5$	506
5 <= d < 10	506
$10 \le d < 15$	506
15 <= d < 23	506
23 <= d < 30	506

*Source: Description of Accuracy Scenarios for the Acceptance Testing of URET CCLD, Review Draft 9/14/99

Example Encounter & Lateral Adherence

*Upper boundary found in Table 3.2-1 and 2 in *Description of Accuracy Scenarios for the Acceptance Testing of URET CCLD*, Review Draft 9/14/99

MP-21

Post processed

track reports

calculated on

smoothed tracks

Track Conflict Probe (TCP)

- Input: Post Processed Track Reports
- Output: Two Oracle Database Tables

Encounter List - lists encounter information

- » aircraft pair identification
- » encounter start and end times (XYZT)
- » adherence age at reference time
- » minimum separations and their times
- » encounter angle and phase of flight

Aircraft Minsep List - lists pairs that simply passed Gross Filter (around entire flight 35nm & 3000ft)

- » minimum separations and their times
- » altitude at minimum horizontal separation

Special Use Airspace Penetrations

BOUNDARY CROSSINGS:

ENCOUNTERS & PENETRATIONS - SUA SIDE VIEW

Encounter Geometry

ENCOUNTERS & PENETRATIONS - SUA SIDE VIEW

Scenario Metric Categories

- Center Airspace
- Encounters
- Air Traffic
- Aircraft
- Interfacility Traffic Flow
- Flight Plan Adherence
- Weather Forecasts

